123 research outputs found

    Boosting the Adversarial Transferability of Surrogate Models with Dark Knowledge

    Full text link
    Deep neural networks (DNNs) are vulnerable to adversarial examples. And, the adversarial examples have transferability, which means that an adversarial example for a DNN model can fool another model with a non-trivial probability. This gave birth to the transfer-based attack where the adversarial examples generated by a surrogate model are used to conduct black-box attacks. There are some work on generating the adversarial examples from a given surrogate model with better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. This paper proposes a method for training a surrogate model with dark knowledge to boost the transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM). The proposed method for training a DSM consists of two key components: a teacher model extracting dark knowledge, and the mixing augmentation skill enhancing dark knowledge of training data. We conducted extensive experiments to show that the proposed method can substantially improve the adversarial transferability of surrogate models across different architectures of surrogate models and optimizers for generating adversarial examples, and it can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification. Our code is publicly available at \url{https://github.com/ydc123/Dark_Surrogate_Model}.Comment: Accepted at 2023 International Conference on Tools with Artificial Intelligence (ICTAI

    Self-Supervised Transformer with Domain Adaptive Reconstruction for General Face Forgery Video Detection

    Full text link
    Face forgery videos have caused severe social public concern, and various detectors have been proposed recently. However, most of them are trained in a supervised manner with limited generalization when detecting videos from different forgery methods or real source videos. To tackle this issue, we explore to take full advantage of the difference between real and forgery videos by only exploring the common representation of real face videos. In this paper, a Self-supervised Transformer cooperating with Contrastive and Reconstruction learning (CoReST) is proposed, which is first pre-trained only on real face videos in a self-supervised manner, and then fine-tuned a linear head on specific face forgery video datasets. Two specific auxiliary tasks incorporated contrastive and reconstruction learning are designed to enhance the representation learning. Furthermore, a Domain Adaptive Reconstruction (DAR) module is introduced to bridge the gap between different forgery domains by reconstructing on unlabeled target videos when fine-tuning. Extensive experiments on public datasets demonstrate that our proposed method performs even better than the state-of-the-art supervised competitors with impressive generalization

    Federated PAC-Bayesian Learning on Non-IID data

    Full text link
    Existing research has either adapted the Probably Approximately Correct (PAC) Bayesian framework for federated learning (FL) or used information-theoretic PAC-Bayesian bounds while introducing their theorems, but few considering the non-IID challenges in FL. Our work presents the first non-vacuous federated PAC-Bayesian bound tailored for non-IID local data. This bound assumes unique prior knowledge for each client and variable aggregation weights. We also introduce an objective function and an innovative Gibbs-based algorithm for the optimization of the derived bound. The results are validated on real-world datasets

    Machine Unlearning Method Based On Projection Residual

    Full text link
    Machine learning models (mainly neural networks) are used more and more in real life. Users feed their data to the model for training. But these processes are often one-way. Once trained, the model remembers the data. Even when data is removed from the dataset, the effects of these data persist in the model. With more and more laws and regulations around the world protecting data privacy, it becomes even more important to make models forget this data completely through machine unlearning. This paper adopts the projection residual method based on Newton iteration method. The main purpose is to implement machine unlearning tasks in the context of linear regression models and neural network models. This method mainly uses the iterative weighting method to completely forget the data and its corresponding influence, and its computational cost is linear in the feature dimension of the data. This method can improve the current machine learning method. At the same time, it is independent of the size of the training set. Results were evaluated by feature injection testing (FIT). Experiments show that this method is more thorough in deleting data, which is close to model retraining.Comment: This paper is accepted by DSAA2022. The 9th IEEE International Conference on Data Science and Advanced Analytic
    • …
    corecore